- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Asensio, Omar I. (1)
-
Doshi, Ameet (1)
-
Hicks, Diana (1)
-
Zullo, Matteo (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In seeking to understand how to protect the public information sphere from corruption, researchers understandably focus on dysfunction. However, parts of the public information ecosystem function very well, and understanding this as well will help in protecting and developing existing strengths. Here, we address this gap, focusing on public engagement with high-quality science-based information, consensus reports of the National Academies of Science, Engineering, and Medicine (NASEM). Attending to public use is important to justify public investment in producing and making freely available high-quality, scientifically based reports. We deploy Bidirectional Encoder Representations from Transformers (BERT), a high-performing, supervised machine learning model, to classify 1.6 million comments left by US downloaders of National Academies reports responding to a prompt asking how they intended to use the report. The results provide detailed, nationwide evidence of how the public uses open access scientifically based information. We find half of reported use to be academic—research, teaching, or studying. The other half reveals adults across the country seeking the highest-quality information to improve how they do their job, to help family members, to satisfy their curiosity, and to learn. Our results establish the existence of demand for high-quality information by the public and that such knowledge is widely deployed to improve provision of services. Knowing the importance of such information, policy makers can be encouraged to protect it.more » « less
An official website of the United States government
